Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)15.

نویسندگان

  • M Mitas
  • A Yu
  • J Dill
  • T J Kamp
  • E J Chambers
  • I S Haworth
چکیده

Although triplet repeat DNA sequences are scattered throughout the human genome, their biological function remains obscure. To aid in correlating potential structures of these nucleic acids with their function, we propose their classification based on the presence or absence of a palindromic dinucleotide within the triplet, the G + C content, and the presence or absence of a homopolymer. Five classes of double-stranded (ds) triplet repeats are distinguished. Class I repeats, which are defined by the presence of a GC or CG palindrome, have the lowest base stacking energies, exhibit the lowest rates of slippage synthesis [Schlötterer and Tautz (1992) Nucleic Acids Res., 20, 211] and are uniquely associated with triplet repeat expansion diseases. The six single-stranded (ss) triplet repeats within Class I also have the potential to form hairpin structures, as determined by energy minimization. To explore the possibility of hairpin formation by ss Class I triplet repeats, studies were performed with a ss oligonucleotide containing 15 prototypic CTG repeats [ss (CTG)15]. Electrophoretic, P1 nuclease and KMnO4 oxidation data demonstrate that ss (CTG)15 forms a hairpin containing base paired and/or stacked thymines in the stem. Potential functions of hairpins containing Class I triplet repeats are discussed with respect to protein translation and mRNA splicing. Further, potential roles of hairpin structures in triplet repeat expansion events are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.

We have embedded the hexameric triplet repeats (CAG)(6) and (CTG)(6) between two (GC)(3) domains to produce two 30-mer hairpins with the sequences d[(GC)(3)(CAG)(6)(GC)(3)] and d[(GC)(3)(CTG)(6)(GC)(3)]. This construct reduces the conformational space available to these repetitive DNA sequences. We find that the (CAG)(6) and (CTG)(6) repeats form stable, ordered, single-stranded structures. The...

متن کامل

Novel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy.

While an unstable CTG triplet repeat expansion is responsible for myotonic dystrophy, the mechanism whereby this genetic defect induces the disease remains unknown. To detect proteins binding to CTG triplet repeats, we performed bandshift analysis using as probes double-stranded DNA fragments having CTG repeats [ds(CTG)6-10] and single-stranded oligonucleotides having CTG repeats ss(CTG)8 or RN...

متن کامل

The trinucleotide repeat sequence d(GTC)15 adopts a hairpin conformation.

The structure of a single-stranded (ss) oligonucleotide containing (GTC)15 [ss(GTC)15] was examined. As a control, parallel studies were performed with ss(CTG)15, an oligonucleotide that forms a hairpin. Electrophoretic mobility, KMnO4 oxidation and P1 nuclease studies demonstrate that, similar to ss(CTG)15, ss(GTC)15 forms a hairpin containing base paired and/or stacked thymines in the stem. E...

متن کامل

Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases.

Expansions of trinucleotide repeats in DNA, a novel source of mutations associated with human disease, may arise by DNA replication slippage initiated by hairpin folding of primer or template strands containing such repeats. To evaluate the stability of single-strand folding by repeating triplets of DNA bases, thermal melting profiles of (CAG)10, (CTG)10, (GAC)10 and (GTC)10 strands are determi...

متن کامل

Rapid unwinding of triplet repeat hairpins by Srs2 helicase of Saccharomyces cerevisiae

Expansions of trinucleotide repeats cause at least 15 heritable human diseases. Single-stranded triplet repeat DNA in vitro forms stable hairpins in a sequence-dependent manner that correlates with expansion risk in vivo. Hairpins are therefore considered likely intermediates during the expansion process. Unwinding of a hairpin by a DNA helicase would help protect against expansions. Yeast Srs2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 23 6  شماره 

صفحات  -

تاریخ انتشار 1995